
FI COMBINING SEPARATION OF VARIABLES & COULOMB INTEGRALS

- Coulomb integrals are often difficult to evaluate .
We

get stuck unless we have very symmetric distributions
of charge and we ask for V or E @ a point that

doesn't spoil that symmetry .

- For example , given a charge density -0=0-0 cos@ on

a sphere , I can easily evaluate the Coulomb integral
to find V @ a point on the Z - axis :
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- But as we've seen , we can use 5. o .
V

.
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potentialanywhere for this distribution of charge .

So

why worry about Coulomb integrals ?

- We can actually use the result above , obtained from

a Coulomb integral ,
to identify the coefficients in

our S.o. V . solution .
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- Let's see how it works . Here
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azimuthalsymmetry that the potential can be written
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- Let's compare these to our expression for V @ a

point on the z-axis
.



- The Z -axis is -0=0 ( Z > o ) or ① = IT ( z co) in SPC .

- First we 'll consider IZI L R .
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- What about outside the sphere ? First consider Z >O .
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- Let's check ⑦ = IT ( 2- LO) as well
.
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- Again , the results for -0=0 & O = IT agree , so :

Vcr > 12,07=5%47 cos O



- Of course we arrive @ the same result we got
when we solved this as a 5. o .V . boundary valve

problem .

- Can we apply this to something more complicated ?

- Our first example of a Coulomb integral was the
electric field above or below the center of a

uniformlycharged disk . In that calculation we made

that line through the center of the disk our z-axis
.

Later we calculated V (0,0, Z ) . Can we use this

hybrid approach to find V everywhere ? ( Yes . )
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- When evaluating this , we 'd be careful to write FZ

as Z for Z >O E: - Z for Z L O .

- Of course
,
ZF is just r here - the distance from

the origin .
So we could also write V(0,0, Z ) as
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- Now what about V off-axis? First , we expect it to

be symmetric across the x-y plane .



- Consider two points above & below the disk :
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- Since we know that Vcr
,
it- O ) = Vcr , O ) , we will just

work out Vcr
,
O) for 0 EOLITH .

- The disk is an azimuthally symmetric distribution of

charge , and we know what the potential looks like

in that case - powers of r e: Yr along w/ Legendre

polynomials . But where do I see that in the VCQQZ)

we found from the Coulomb integral ?
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- So on the z - axis we can write V as an expansion in

powers of Xp for r L R
,
and in powers of Rtr for r > R .

We just need to compare these to the 5. o -
V. solution

on the Z- axis .
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- Now
, we know Vcr

,
it - O) -- Vcr,O) ble the potential should

look the same on either side of the disk . Thats good ,
b/c most of the terms we found above ( Azn & Dzn) show

up w/ even Legendre polynomials .
So most of the terms in

our 5. o. V . solution give the same value for O E
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- But theres one exception ! It's the b- I term for RLR
. That

term flips sign for it- O :

- je r . Piccoli-a) = - Ifor . coslito) = tenor cos@
So when we write our 5. o .

V. solution for the LOE IT , we have

to flip the sign of the 1=1 term for RLR . (we will see

why in just a moment . )



- The potential due to the disk @ any point F is :
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- Thats it ! There are a few subtleties
,
but first lets plot it .
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- Now
,
V is always continuous ,

so we should be sure that

our results for RER e: r > R agree @ r=R .
And when

we do this
, we find something funny !
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- But how can this be ? How can a bunch of Legendre
polynomials add up to Zero ? Aren't they orthogonal ?

- Yes
,
the Peloso ) are orthogonal for OEOE IT , but our

expression for VLRE 12,07 that we used above only applies
for 0102172 ! Its not obvious based on what we learned

in Math Methods
, but that sun above does add up

to P ,
( cos @) if we only consider OE @ LINZ .

- Likewise
,
we find that our RER and r > R expressions

for V also agree @ F- R for Hz COE IT.

- How else can we check our result ? The disk has a surface

charge on it , so E should be discontinuous @ -0=172 & RER .

Specifically :
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- Now
, we have V as a function of re:O ,

and we write

it the same way for OL 'th E: O > 'Tz when r ER except



for the 1=1 term :
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- So when we compare these @ Z -- O for RER we get
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- So

, by comparing our Coulomb integral result for the potential
above & below the center of a charged disk w/ the general
5. o . V. solution for an azimuthal ly symmetric problem ,

we were

able to find Vcr
,
O ) everywhere ,

not just along the Z-axis

(0=0 or O -

- it ) .

- Confirming that the solution we found is continuous @

r -- R requires some properties of Legendre polynomials
that go beyond what we covered in Math Methods

,

but everything works as expected .

- Here 's the final result again :
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